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Abstract 10 
 11 
Streamflow generation and deep groundwater recharge in high elevation and high latitude locations may be 12 

vulnerable to loss of snow, making it important to quantify how snowmelt is partitioned between soil storage, deep 13 

drainage, evapotranspiration, and runoff. Based on previous findings, we hypothesize that snowmelt produces 14 

greater streamflow and deep drainage than rainfall and that this effect is greatest in dry climates. To test this 15 

hypothesis we examine how snowmelt and rainfall partitioning vary with climate and soil properties using a 16 

physically based variably saturated subsurface flow model, HYDRUS-1D. To represent climate variability we use 17 

historical inputs from five SNOTEL sites in each of three mountain regions with humid to semiarid climates: 18 

Northern Cascades, Sierra Nevada, and Uinta. Each input scenario is run with three soil profiles of varying hydraulic 19 

conductivity, soil texture, and bulk density. We also create artificial input scenarios to test how the concentration of 20 

input in time, conversion of snow to rain input, and soil profile depth affect partitioning of input into deep drainage 21 

and runoff. Results indicate that event-scale runoff is higher for snowmelt than for rainfall due to higher antecedent 22 

moisture and input rates in both wet and dry climates. At the annual scale, surface runoff also increases with 23 

snowmelt fraction, whereas deep drainage is not correlated with snowmelt fraction. Deep drainage is less affected by 24 

changes from snowmelt to rainfall because it is controlled by deep soil moisture changes over longer time scales. 25 

However, extreme scenarios with input highly concentrated in time, such as during melt of a deep snowpack, yield 26 

greater deep drainage below the root zone than intermittent input. Soil texture modifies daily wetting and drying 27 

patterns but has limited effect on annual scale partitioning of rain and snowmelt, whereas increases in soil depth 28 

decrease runoff and increase deep drainage. Overall these results indicate that runoff may be substantially reduced 29 

with seasonal snowpack decline in all climates. These mechanisms help explain recent observations of streamflow 30 

sensitivity to changing snowpack and emphasize the need to develop strategies to mitigate impacts of reduced 31 

streamflow generation in places most at risk for shifts from snow to rain. 32 

 33 

 34 

 35 

 36 

 37 
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1 Introduction 38 

 39 

Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and 40 

high latitude locations (Regonda et al. 2005; Stewart et al. 2005; Earman et al., 2006; Clow, 2010; Jefferson, 2011; 41 

Furey et al., 2012). Soils modulate the partitioning of snowmelt into subsurface storage, deep drainage, evaporative 42 

losses and surface runoff. Snow persistence shows declines around the globe (Hammond et al., 2018b), and these 43 

snow losses may lead to changes in water input magnitude and timing (Harpold et al., 2015; Harpold et al., 2017). 44 

As areas of “at risk snow” become more apparent (Nolin and Daly, 2006), there is an urgent need for mechanistic 45 

studies that quantify the partitioning of snowmelt in the critical zone among vapor losses, surface flow, and 46 

subsurface flow and storage (Brooks et al., 2015; Meixner et al., 2016).  47 

 48 

Changes in precipitation phase from snow to rain can modify hydrological partitioning by altering the timing and 49 

rate of inputs. Snowmelt rates may not reach the extreme intensities of rainfall (Yan et al., 2018), but unlike rainfall, 50 

which is typically episodic, snow can accumulate over time, then melting as a concentrated aggregate of soil water 51 

input (Loik et al., 2004). Such concentrated snowmelt events can lead to a large proportion of runoff and deep 52 

drainage (Earman et al., 2006; Berghuijs et al., 2014; Li et al., 2017). With climate warming, future snowmelt rates 53 

may be reduced in many areas because earlier melt occurs when solar radiation is lower (Musselman et al., 2017). 54 

Along with warmer temperatures, increasing atmospheric  humidity is leading to more frequent and greater 55 

magnitude mid-winter melt events in humid regions, and increased snowpack sublimation and/or evaporation in dry 56 

regions (Harpold and Brooks, 2018). Some areas (i.e. the Cascades) are predicted to receive more intense water 57 

inputs with rainier futures, whereas others (i.e. Southern Rockies) will likely experience declines in input intensity 58 

with snow loss (Harpold and Kohler, 2017). Given the considerable heterogeneity in the factors that affect 59 

hydrological partitioning, such as climate, soils, topography, and vegetation, different locations may not respond in 60 

the same way to loss of snow. 61 

 62 

Water inputs from rain or snowmelt during periods of low potential evapotranspiration and higher antecedent 63 

moisture conditions are more likely to generate runoff and deep drainage (Molotch et al., 2009). Prior research has 64 

shown that near-surface soil moisture response is closely related to snow disappearance (Harpold and Molotch, 65 

2015; Webb et al., 2015; Harpold et al., 2015) with strong links between snowmelt and soil moisture dynamics at 66 

multiple spatial and temporal scales (Loik et al. 2004; Williams et al. 2009; Blankinship et al. 2014; Kormos et al., 67 

2014; Harpold and Molotch, 2015; Webb et al. 2015; Kampf et al. 2015).  Earlier snow disappearance can lead to 68 

lower average soil moisture conditions not as conducive to streamflow generation as later snowmelt (Kampf et al. 69 

2015). The effects of earlier snowmelt on soil moisture dynamics may also vary with precipitation after snowmelt. 70 

Late-spring precipitation can overwrite the signal of earlier snowmelt timing on spring and summer soil moisture 71 

(Liator et al., 2008, Conner et al., 2016), whereas a lack of spring and summer precipitation can cause effects of 72 

earlier snowmelt on soil moisture to persist longer (Blankenship et al, 2014; Harpold, 2016). Earlier snow 73 

disappearance can lead to diverging patterns in growing season length; a longer growing season if energy hinders 74 
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vegetation growth, or a shorter growing season when soil water stress limits productivity (Harpold et al., 2015; 75 

Harpold, 2016; Hu et al., 2010).  76 

 77 

Both runoff and deep drainage are affected by soil texture, soil depth, rooting depth (Cho and Olivera, 2009; 78 

Seyfried et al., 2005) and topography. These properties have limited variability over timespans of hydrologic 79 

analysis and can produce temporally stable spatial patterns of soil moisture, where some parts of the landscape are 80 

consistently wetter than others (Williams et al., 2009; Kaiser and McGlynn, 2018). Aspect modifies the snowpack 81 

energy balance, leading to higher sustained moisture content on north-facing slopes compared to south-facing slopes 82 

with the same input (in the northern hemisphere); landscape evolution due to wetter conditions on north-facing 83 

slopes may lead to deeper profiles and more deeply weathered rock conducive to deep drainage in some locations 84 

(Hinckley et al., 2014; Langston et al., 2015). Where soils are shallow, winter precipitation may exceed the soil 85 

storage capacity, leading to both runoff generation and deep drainage (Smith et al., 2011). Deeper soil profiles have 86 

greater storage capacity, which can sustain streamflow, even with snow loss; however, given consecutive years of 87 

low input these profiles will be depleted of storage leading to lower flows (Markovich et al., 2016). Deeper soils can 88 

also help sustain transpiration during the late spring and summer, when shallow soils have already dried (Foster et 89 

al. 2016; Jepsen et al., 2016).  Streamflow can be insensitive to inputs under dry conditions, but respond rapidly 90 

once a threshold soil moisture storage value is exceeded (McNamara et al., 2005; Liu et al., 2008; Seyfried et al., 91 

2009). McNamara et al. (2005) hypothesized that when dry-soil barriers are breached, there is sudden connection to 92 

upslope soils, leading to delivery of water to areas that were previously disconnected. In their semi-arid study area, 93 

such breaching of dry-soil barriers was only observed for periods of concentrated and sustained input from high-94 

magnitude spring snowmelt. Together the complex interactions of soil properties, antecedent conditions, water 95 

inputs, and evaporative demand make it challenging to determine how changes from snow to rain affect hydrologic 96 

response even in idealized settings.  97 

 98 

The goal of this study is to improve our understanding of how changes in precipitation phase from snow to rain 99 

affect hydrological partitioning in a one-dimensional (1-D) representation of the critical zone. Partitioning of 100 

precipitation input, P, can be into runoff, Q, defined as lateral export of water from the domain; evaporation, E; 101 

transpiration, T; deep drainage below the root zone, D; and storage within the soil root zone, Δ𝑆. Over a given time 102 

increment, partitioning can be tracked using the water balance (equation 1).  103 

 104 

𝑃 = 𝑄 + 𝐸 + 𝑇 + 𝐷 +  Δ𝑆         (1) 105 

 106 

We address the questions: (1) Are snowmelt and rain partitioned differently between Q, ET, and D? and (2) How is 107 

snowmelt and rain partitioning affected by climate, soil type, and soil depth?  We use a physically-based 1-D 108 

modeling approach to address these questions and systematically test hypotheses about hydrologic response to snow 109 

loss.   110 

 111 
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We hypothesize that reducing the fraction of precipitation falling as snow leads to lower runoff and deep drainage 112 

because it reduces the concentration of input in time (Figure 1). Concentrated input during melt of a seasonal 113 

snowpack often saturates soils, causing saturation excess runoff and deep drainage below the root zone (Hunsaker et 114 

al., 2012; Kampf et al., 2015; Webb et al., 2015; Barnhart et al., 2016). Diffuse input over time reduces the 115 

likelihood of saturation because it allows time for water redistribution and evapotranspiration between inputs. We 116 

also hypothesize that snowmelt is critical for runoff generation and deep drainage in dry climates and deep soils, 117 

where snowmelt is the dominant cause of soil saturation (McNamara et al., 2005; Tague and Peng, 2013), whereas 118 

the partitioning of rain and snowmelt may be more similar in wet climates and shallow soils, which are more 119 

frequently saturated by either rain or snowmelt inputs (Loik et al., 2004) (Figure 1). 120 

 121 

2 Methods 122 

 123 

To evaluate soil moisture response to rainfall and snowmelt over a wide range of climate and soil conditions we 124 

used HYDRUS-1D (Šimůnek et al. 1998), a physically-based finite element numerical model for simulating one-125 

dimensional water movement in variably saturated, multi-layer, porous media. 126 

 127 

2.1 Study design, site selection, and data sources 128 

 129 

We utilized daily input data from five United States Department of Agriculture Natural Resources Conservation 130 

Service (NRCS) snow telemetry (SNOTEL) sites in each of three regions that span a wide range of climate and 131 

snow conditions: the Cascades, Sierra Nevada, and Uinta mountains for a total of 15 sites. Daily rather than hourly 132 

data were chosen to limit the effects of missing and incorrect values on the analyses. The three regions chosen to 133 

represent dominant climate types in the western U.S., and within each region, sites were selected to span a snow 134 

persistence (SP) gradient, which is the mean annual fraction of time that an area is snow covered between Jan 1 and 135 

Jul 3 (Moore et al., 2015) over the ~35 years of record (Figure 2a, Table 1).  136 

 137 

With each climate scenario we simulated vertical profiles of volumetric water content (VWC), which were depth-138 

integrated to compute soil moisture storage (S). For these simulations deep drainage (D) is any flux of water 139 

downward below the root zone. Runoff (Q) is any water that does not infiltrate into the soil, either because of 140 

saturated conditions or because input rates exceed infiltration capacity. Evaporation (E) is direct evaporation from 141 

the soil, and transpiration (T) is mediated by plant roots; for this study, these values are combined into 142 

evapotranspiration (ET) to represent the bulk loss of water to the atmosphere.   143 

Daily precipitation (P), snow water equivalent (SWE), and volumetric water content (VWC) at 5, 20, and 50 cm 144 

were obtained for each SNOTEL site using the NRCS National Weather and Climate Center (NWCC, 2016) Report 145 

Generator (Table 1). The records were quality controlled to ensure reasonable precipitation, SWE and VWC values 146 

as in Harpold and Molotch (2015). Unrealistic values were removed (i.e. negative SWE, VWC below zero or above 147 

unity); all daily VWC outside of three standard deviations from the mean were removed, and a manual screening 148 
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was performed on VWC data to identify shifts and other artifacts not captured by the first two automated 149 

procedures. Daily potential evapotranspiration (PET) was extracted from daily gridMET (Abatzoglou, 2013) for the 150 

4 km pixel containing each SNOTEL site. This product uses the ASCE Penman-Monteith method to compute PET.  151 

 152 

We chose three SNOTEL sites (432 Currant Creek, 698 Pole Creek R.S., 979 Van Wyck) to represent soil profile 153 

characteristics. While 365 of the 747 SNOTEL sites in the western U.S. have soil moisture sensors, only a fraction 154 

of these sites have detailed soil profile data. The sites with soil profile data have information obtained from soil 155 

samples taken in the soil pits and processed in the NRCS Soil Survey Laboratory in Lincoln, NE for texture, water 156 

retention properties, and hydraulic conductivity. We obtained detailed soil profile data, in the form of pedon primary 157 

characterization files from the NRCS, and selected three profiles (Figure 2b, Table 2) that represent the range of soil 158 

textures and hydraulic conductivity values present at SNOTEL locations. Each had detailed NRCS pedon primary 159 

characterizations to depths greater than 100 cm and >15 years of daily soil moisture records at 5, 20 and 50 cm 160 

depths. 161 

2.2 Simulations 162 

 163 

In HYDRUS-1D, we simulated water flow and root water uptake for a vertical domain 10 m deep. The domain was 164 

discretized into 500 nodes with higher node density near the surface (~0.15 cm for top 5 cm to ~5 cm for the bottom 165 

of the profile). For the surface boundary, we used a time variable atmospheric boundary condition, which allows 166 

specifying input (snowmelt and rain) and potential evapotranspiration (PET) time series. Runoff can also be 167 

generated at the surface boundary. For the lower boundary, we allowed free drainage from the bottom of the soil 168 

profile at 10 m. Surface soil water input was calculated by totaling snowmelt and rainfall input at the daily time step 169 

from SNOTEL precipitation and SWE values. Melt was computed for any day when SWE decreased; if SWE 170 

decreased, and the precipitation was greater than 0, total soil water input was assumed to be melt plus precipitation. 171 

The atmospheric boundary condition requires PET, leaf area index (LAI), and a radiation extinction coefficient used 172 

in the estimation and separation of potential evaporation and transpiration. We assigned a constant LAI of three, as 173 

this value generally fits the mixed conifer forests (Jensen et al., 2011) where SNOTEL sites are installed and 174 

assumed a radiative extinction coefficient of 0.39, which is the default value. Root water uptake in the model was 175 

estimated using Feddes parameters for a conifer forest (Lv, 2014: h1 0 cm, h2 0 cm, h3h -5,100 cm, h3l -12,800 cm, 176 

h4 -21,500 cm, TPlow 0.5 cm/d, TPhigh 0.1 cm/d)), with roots uniformly distributed from the soil surface to the 177 

interface with a lower hydraulic conductivity layer, as we lacked any more detailed information on root distribution 178 

or soil depth at these sites.  179 

 180 

We created soil layers with depths and textures taken from the NRCS soil pedon measurements. From this 181 

information we applied the neural network capability of HYDRUS-1D, which draws from the USDA ROSETTA 182 

pedotransfer function model (Schaap et al., 2001), to determine soil hydraulic parameters. Using the NRCS pedon 183 

primary characterizations we input percent sand, silt and clay, bulk density, wilting point, and field capacity; the 184 

neural network model estimates soil hydraulic parameters based on these inputs. Below the depth of the soil pedon 185 
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measurements, we configured the simulations to have a deep “bedrock” or regolith layer with lower saturated 186 

hydraulic conductivity (Ks) but the same water retention parameters as the layer above. Any water entering this 187 

lower layer is considered deep drainage. The hydraulic conductivity of this lower layer was set at one tenth that of 188 

the layer above; this value was determined through iterative testing of Ks values (see Supplementary). We extended 189 

the “bedrock” or regolith layer to 10 m depth to allow for deep drainage to occur without boundary effects that could 190 

be caused by a shallower regolith. The initial VWC for all layers in each simulation was 0.2, and simulations were 191 

run with a year of surface boundary condition inputs to establish initial conditions. We tested the simulation 192 

configuration by comparing to observed VWC at 5, 20 and 50 cm depths for the three selected soil profile sites 193 

(Figure S1, Table S1). Rather than force-fitting, our goal was to produce simulations with similar timing of wetting 194 

and drying to observations. This approach is consistent with other studies using HYDRUS – 1D, which also started 195 

with basic soils data and application of the ROSETTA pedotransfer function (Scott et al., 2000) and then calibrated 196 

to observed water content measurements by adjusting permeability of the “bedrock” layer (Flint et al., 2008).  197 

 198 

We applied climate scenarios from each of the 15 SNOTEL sites selected (Table 1) to each of the soil profiles to 199 

examine how climate and soil type affect partitioning. We then conducted additional experiments to modify inputs 200 

using just the loam profile. First to examine whether snowmelt and rainfall are partitioned differently, we changed 201 

all precipitation to rain and compared the simulation output to those with the original climate data. Second, to 202 

examine the effects of input concentration, we artificially produced intermittent input (four five-day periods of low 203 

magnitude) and concentrated input (one twenty-day period of high magnitude) of the same annual total for one wet 204 

(559) and one dry (375) site using the loam profile (1056) for all years of data. Third, to examine how soil depth 205 

affects partitioning we altered the depth of rooting zones to 0.5, 1.5 and 2 times their original depth. For 0.5 depth 206 

scenarios, we replaced soil layers deeper than 0.5 times the original depth with the bedrock/regolith layer. For 1.5x 207 

and 2x scenarios, the layer above bedrock/regolith was extended downward, and the rooting zone extended to the 208 

new soil depth.  209 

 210 

2.3 Analysis 211 

 212 

Using the simulation results, we examined how rain and snowmelt were partitioned into soil storage (S), deep 213 

drainage (D), evapotranspiration (ET), and runoff (Q). Daily soil storage is reported as the total soil water within the 214 

rooting zone only, and D is any water passing below the rooting zone (106-127 cm depending on the soil profile). 215 

We assessed partition components both in units of length (cm) and as ratios to total input (unitless, e.g. Q/P) at both 216 

event and annual time scales.  217 

 218 

To analyze hydrologic partitioning at event time scale we defined rainfall events as days with precipitation while 219 

SWE equaled zero and snowmelt events for days with declining SWE and no simultaneous precipitation. To focus 220 

on differences between rainfall and snowmelt, only events with entirely rainfall or entirely snowmelt input were 221 

considered in this analysis; mixed events were excluded. Events could last as long as the conditions were 222 
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continuously satisfied, and only those followed by at least five days of no input were used in analysis. Total depths 223 

of each variable were computed for each defined event time period; input rain and snowmelt were summed over the 224 

event time period, and response variables (Q, ET, D) also included the day after the event ended to account for lag in 225 

event response. Antecedent S for each event was determined by taking the root zone storage from the day prior to 226 

the first event input. 227 

 228 

At the annual scale, soil water input and partitioning components (rain, snowmelt, Q, ET, D) were totaled for each 229 

year, and the change in water year storage (S) determined by subtracting the values of S at the end of the year from 230 

the value at the beginning of the year. In addition to S, mean saturation (Sat) at each observed depth was calculated 231 

as the average annual VWC divided by soil porosity. We use mean saturation (Sat) as an alternative to change in 232 

water year storage (S) because mean saturation is much easier to quantify at a field site than root zone storage, and 233 

this extends the application of our study to other areas with daily VWC data. Sat also provides a measure of soil 234 

water conditions throughout the year as opposed to S which represents only changes between the start and end of 235 

the water year. 236 

 237 

To characterize climate conditions at the mean annual scale, each site was classified as dry (precipitation deficit, 238 

PET>P) and wet (precipitation surplus, PET<P). This separation by aridity index is based on our hypothesis that the 239 

influence of concentrated snowmelt is greater in dry climates than in wet climates (Hammond et al, 2018a). We also 240 

report the maximum SWE and snowmelt fraction as the annual total snowmelt divided by annual total input. 241 

Following the methods for computing the precipitation concentration index (PCI), which represents the continuity or 242 

discrete nature of input through time (Martin-Vide, 2004; Raziei et al., 2008; Li et al., 2011), we computed the input 243 

concentration index (ICI) using snowmelt and rain input. Pearson correlation tests were conducted between 244 

explanatory variables (P, PET, P/PET, peak SWE, average melt rate, and ICI) and dependent variables (Q, ET, D, 245 

mean saturation at 100 cm: Sat100).  246 

 247 

Using both the event and annual results, we examined (1) whether partitioning of rainfall input differed from that of 248 

snowmelt input, and (2) how partitioning was affected by climate, soil texture, and soil depth. For question 1, we 249 

tested for differences in event partitioning between input type (rain or snowmelt) and differences in annual 250 

partitioning between historical and all rain scenarios using ANOVA. For question 2, we tested for differences in 251 

annual partitioning between climate (wet, dry) and soil depth groupings, also using ANOVA. Additionally for 252 

question 2, we tested the pairwise difference in linear regression slopes using indicator-variable regression with 253 

interaction in JMP (SAS-based statistical software) to determine whether the rate of change between explanatory 254 

and response variable differed by climate or soil depth grouping. 255 

 256 

 257 

 258 

 259 
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3 Results 260 

 261 

Simulations for each of the 15 climate scenarios exhibit substantial variability at the annual scale in precipitation 262 

(P), runoff (Q), and deep drainage (D) (Figure 3). All regions have a wide range of annual P, but overall the highest 263 

P was in the Cascades region and lowest in the Uinta. The wide range of climate conditions simulated allows for an 264 

evaluation of climate effects on Q, ET, D, and Sat100 (Table S3). Annual precipitation (P) is positively correlated 265 

with runoff (Q, r=0.97), deep drainage (D, r=0.92), and Sat100 (r=0.73) (Table S3). The relationship is linear for Q 266 

but nonlinear for D and Sat100. Sat100 plateaus at ~250 cm P with further P partitioned to Q instead of D. 267 

Evapotranspiration (ET) has the weakest correlations with P (r=0.08) of all partitioned components. Q/P increases 268 

with P up to around 250 cm of P, and D/P increases with P up to around 100 cm (Figure 3). ET/P decreases with 269 

precipitation, whereas S/P is unrelated to P. At values of P greater than around 300 cm, all variables have relatively 270 

consistent values even as P increases.  271 

 272 

3.1 Snowmelt vs rainfall and climatic influences on partitioning 273 

 274 

Our first research question asks whether snowmelt and rainfall are partitioned differently. At the event scale, input 275 

rates are significantly greater on average for snowmelt than for rainfall in each of the three regions and for the full 276 

dataset (ANOVA p<0.0001, mean snowmelt 1.1 cm/d, mean rainfall 0.9 cm/d, Figure 4), though rainfall events have 277 

a higher maximum input rate (maximum snowmelt 8.0 cm/d, maximum rainfall 14.7 cm/d). Snowmelt events tend to 278 

occur on wetter soils, as estimated by antecedent soil moisture storage for the rooting zone (ANOVA p<0.0001, 279 

mean S for snowmelt 56.6 cm, mean S for rainfall 48.2 cm). Average runoff ratios (Q/P) are higher for snowmelt 280 

than for rainfall (ANOVA p<0.0001, mean Q/P snowmelt 0.20, mean Q/P rainfall 0.03), whereas ET/P is lower for 281 

snowmelt as compared to rainfall (mean snowmelt 0.24, mean rainfall 0.40). Deep drainage responses are affected 282 

by longer time scales than single events, so we did not include these in the event analysis.  283 

 284 

At the annual scale, input at all sites is a mixture of rain and snowmelt. To examine the importance of snow to 285 

partitioning, we used snowmelt fraction, defined as the fraction of snowmelt to total precipitation, and input 286 

concentration index (ICI). Snowmelt fraction and snow persistence are generally positively correlated with ICI at 287 

dry sites in the Uinta and Sierra, but this correlation declines with wetter sites in the Cascades (Figure S7). This 288 

indicates that areas with greater snowmelt tend to have greater input concentration in dry climates. Q/P increases 289 

with snowmelt fraction (r=0.41), most noticeably where snowmelt fraction is >0.5 and increases with ICI (r=0.80) 290 

(Figure 5). The ranges of Q/P are higher in wet than in dry climates, though dry climates show greater rates of 291 

change with increasing snowmelt fraction and input concentration (Table S4). D/P is somewhat correlated with 292 

snowmelt fraction (r=0.20) and ICI (r=0.43). D/P ranges are higher in wet than in dry climates, with many dry years 293 

not generating D. ET/P is not related to snowmelt fraction and generally declines with ICI (r = -0.75); ranges are 294 

lower for wet climates, where greater input is partitioned to Q and D.  295 

 296 
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We then compared the hypothetical scenarios where we treated all precipitation as rain to snow-dominated historical 297 

scenarios. All rain leads to significantly lower Q/P (p<0.0001, all rain mean 0.17; historical mean 0.31) for both wet 298 

and dry sites (Table 3, Figure 6). This partly relates to lower near-surface saturation in all rain scenarios; the mean 299 

fraction of annual runoff from saturation excess is 88% when all input is rain as compared to 97% with historical 300 

rain and snow input. All rain also leads to higher ET/P for dry sites (p<0.0001, all rain mean 0.95; historical mean 301 

0.83); lower D/P for dry sites (all rain mean 0.01; historical mean 0.03), and higher D/P at wet sites (p=0.011, all 302 

rain mean 0.14; historical mean 0.12) (Table 3, Figure 6).  303 

 304 

Another effect of snow loss can be a decrease in input concentration because snow melt concentrates input in a short 305 

period of time. Experimental scenarios with constant P separated into intermittent and concentrated inputs for a wet 306 

site (375) and a dry site (559) show that increasing input concentration leads to significantly greater Q/P in the dry 307 

site (p<0.05, intermittent mean 0.54, concentrated mean 0.68, Table 3, Figure 6) but no significant difference in the 308 

wet site. In contrast, D/P is significantly greater (p<0.0001) for the concentrated input scenarios  for both dry and 309 

wet sites, as no deep drainage is produced with intermittent input. ET/P is significantly lower in concentrated input 310 

scenarios, with a greater difference in dry climates (p=0.004, mean intermittent 0.80 vs. concentrated 0.66) than in 311 

wet climates (p=0.013, mean intermittent 0.34 vs. concentrated 0.28).  312 

 313 

3.2 Soil property influences on partitioning 314 

 315 

Soil stores water that may later be partitioned into Q, ET, and D. Using Sat100 as an indicator of soil moisture 316 

storage, Figure 7 displays the relationships between Q/P, D/P and ET/P vs Sat100 as separated by climate type, soil 317 

texture, and root zone depth. Sat100 has strong relationships with Q/P, D/P, and ET/P for all, wet, and dry sites 318 

(Figure 7, Table S5). Q/P is generally low (Figure 7a, <0.3) until Sat100 is greater than >0.5. D/P in the simulations 319 

also increases with Sat100, and many simulation years have limited D when Sat100 <0.5. ET/P generally decreases 320 

with saturation for Sat100 values >0.5. 321 

 322 

When these same relationships are separated by soil texture rather than wet/dry climate (Figure 7b, Table S5), the 323 

response patterns are similar between soil types except for the sandy loam profile, which displays higher Q/P and 324 

D/P than the loam and sandy clay loam profiles at similar Sat100 levels. Differences between responses by soil 325 

texture are more evident at sub-annual time scales (Figure 8a). For the example time period shown in Figure 8a, 326 

loam and sandy clay loam profiles wet up each spring during snowmelt prior to the sandy loam profile, and their 327 

higher water retention means they can generate deep drainage earlier and longer than sandy loam. However, sandy 328 

loam has higher Ks, which allows a greater rate of deep drainage during time periods of saturation. Consequently, 329 

the differences in deep drainage between soil textures are limited (Figure 6), except that annual D/P for sandy loam 330 

is higher than for sandy clay loam and loam profiles when Sat100 values are low. The latter soils retain more water, 331 

so they ultimately reach the highest annual D/P values at higher Sat100 values. More water retention in the sandy 332 

clay loam and loam soils can lead to more runoff generation via saturation excess, whereas the drier conditions in 333 
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sandy loam can lead to infiltration excess runoff. However, the net differences in annual total runoff are limited 334 

between the three soil textures (Figure 6).  335 

To assess the influence of soil profile depths on partitioning, we altered the loam soil profile to be 0.5x, 1.5x and 2x 336 

times its original depth (Figure 6, Table 3). For historical input, Q/P and D/P are greatest for the 0.5x depth scenario, 337 

and Q/P declines significantly with deeper soils for both dry and wet sites (p<0.0001), with the greatest declines 338 

between 0.5x and 1x (original) depth. D/P declines significantly between 0.5x and 1x depth, then increases slightly 339 

for all sites with subsequent increases in depth to 1.5x and 2x (Figure 6, Table 3). Q/P and D/P differences by depth 340 

are significant between 0.5x and 1x depth, but not for all subsequent depth comparisons for all, wet and dry site 341 

classifications (Table 3). In pairwise comparisons between depth scenarios Q/P is only significantly different 342 

between 0.5x and 1x depth categories (p <0.0001). Changes in ET/P with soil depth are not significant according to 343 

ANOVA tests. 344 

 345 

Figure 8b displays daily time series of surface runoff, deep saturation, deep drainage, and cumulative deep drainage 346 

during an example period for the four different soil root zone depth scenarios. The shallowest rooting zone of 0.5x 347 

original depth displays the greatest surface runoff as well as cumulative deep drainage throughout the example 348 

period. Each depth reaches and remains at saturation for different amounts of time, with the shallowest profile 349 

reaching saturation earliest and remaining saturated longest, but also decreasing more rapidly to the lowest ending 350 

saturation. The deepest profile takes the longest to increase Sat100, not reaching as high a peak, yet remaining 351 

higher at the end of the period. Deep drainage occurs earliest for the shallowest depth scenario, though reaching a 352 

lower daily flux than the original depth. Deep drainage from the 1x 1.5x and 2x original depth scenarios lag behind 353 

the 0.5x scenario following the same succession as their Sat100 patterns. These patterns in daily Sat100 and deep 354 

drainage result in the highest cumulative deep drainage for the shallowest scenario. 355 

 356 

4 Discussion 357 

 358 

4.1 Snowmelt as an efficient runoff generator and factors accentuating snowmelt efficiency 359 
 360 

The initial hypotheses for this study were that runoff and deep drainage would be greater from snowmelt than 361 

rainfall. Multiple lines of evidence from our 1-D hydrologic simulations point towards snowmelt as a more efficient 362 

driver of runoff, and to a lesser extent deep drainage, than rainfall. Results confirmed that runoff efficiency from 363 

snowmelt events was elevated because snowmelt events were 22% greater in input rate, and occurred on 17% wetter 364 

soils than rainfall. This stands in agreement with previous studies showing that snowpack development and 365 

subsequent melt tend to occur when soils are at elevated moisture contents due to lower ET (Liu et al., 2008; 366 

Williams et al., 2009; Bales et al., 2011). Whether input is snowmelt or rainfall becomes less important for 367 

hydrologic response at annual times scales, for which the correlation between snowmelt fraction and response 368 

variables is weak to moderate (Figure 5, Table S3). When input scenarios are forced into the extreme case of all rain, 369 

they show a lower annual Q/P (Dry: 0.13 vs. 0.04; Wet: 0.46 vs. 0.29), corroborating the event results that indicate 370 

snowmelt elevates runoff (Table 3, Figure 6). We also hypothesized that the effects of changing snowpacks would 371 
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be greatest in dry climates, where soil saturation is less frequent.  However, evidence suggests that both wet and dry 372 

climates are likely to show reduced surface runoff with declining snow water inputs at the 1-D scale. 373 

 374 

We had hypothesized based on prior research (Hunsaker et al., 2012; Langston et al., 2015; Barnhart et al., 2016; Li 375 

et al., 2017; Hammond et al., 2018a) that input concentration would be the primary reason for elevated Q and D 376 

from snowmelt relative to rainfall. While ICI is correlated with increasing Q/P and D/P (Figure 5, Table S3), 377 

snowmelt is not consistently the cause of greater input concentration in the wetter sites (Figure S7). When input is 378 

extremely concentrated, as in the hypothetical experiments (Table 3, Figure 6) D/P increases significantly in both 379 

wet and dry climates, whereas Q/P only increases significantly with input concentration in dry climates. Therefore, 380 

snowmelt likely enhances runoff due to greater input concentration in dry climates, whereas the importance of snow 381 

for concentrated input reduces with wetter climates, where greater runoff from snowmelt may relate more to higher 382 

antecedent moisture.  383 

 384 
The effects of snow loss on D were not as consistent across our simulations as the effects on Q. In general, Q/P was 385 

greater than D/P, so Q was more sensitive to changes in input: Q was higher for snowmelt than rainfall events; Q/P 386 

decreased in all rain simulations, increased in concentrated input simulations, and increased with both snowmelt 387 

fraction and input concentration at the annual time scale. In contrast D/P increased for all rain simulations in wet 388 

climates but decreased in dry, increased in concentrated input simulations, and was not strongly correlated to 389 

snowmelt fraction. This variability in D/P response as compared to Q/P is likely because S mediates the connection 390 

between input and D. In the 1D model Q is affected by infiltration rate and near-surface storage and can more 391 

rapidly respond to input changes. In the simulations shown here once subsurface storage is at capacity, D will 392 

plateau, and Q will increase with further input due to the saturation excess mechanism.   393 

 394 

Soil texture and depth generally do not change partitioning at the annual time scale as much as the varying climate 395 

scenarios (Figure 6), although both runoff and deep drainage increase in the shallowest soils. Shorter durations of 396 

deep drainage for the coarser sandy loam profile compared to the finer texture soils are offset by higher rates of flux 397 

during deep drainage in the coarser profile (Figure 8a). Lower likelihood of surface saturation in the sandy loam soil 398 

compared to other soils is offset by greater likelihood of infiltration excess runoff. Altering soil profile depth and the 399 

associated root zone to 0.5, 1.5x and 2x the original depth produces the largest effects on Q/P and D/P from 0.5x to 400 

1x depth, and mixed directional response from 1x to 2x depth (Table 3, Figure 6). When soil depths exceed the 1x 401 

scenario, the relative amounts of Q and D change (Figure 6). Q gradually declines with greater storage because 402 

surface soils do not stay as wet, whereas D gradually increases with greater storage because less water is lost to Q. 403 

The responsiveness of fluxes to changes in soil depth from 0.5-1x may relate to storage capacity relative to input. 404 

The soil depths ranged from 106-127 cm, which with a porosity of 0.4 gives a storage capacity of 42-51 cm, large 405 

enough to store the mean annual precipitation in most watersheds (Figure 3). When this storage is reduced by half to 406 

21-25 cm, it is smaller than the mean annual precipitation at the wetter sites, which would lead to greater likelihood 407 

of soil saturation that leads to D and Q. Consequently the change in profile depth from 0.5 m to 1 m represents a 408 

shift from annual input greatly exceeding profile storage, to storage approximately accommodating annual input. At 409 
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the sites used in this study, mean annual P ranges from 0.8 to 11.3 times the storage of the 1x soil profile, and peak 410 

SWE ranges from 0.1 to 5.9 times the storage. Reducing soil depth increases the likelihood that peak SWE will 411 

exceed the soil storage capacity, leading to greater surface runoff and deep drainage (Smith et al., 2011). Deeper 412 

rooting depths can allow more water to remain in storage and be lost to ET before contributing to surface runoff and 413 

deep drainage (Smith et al., 2011).  414 

 415 

4.2 Uncertainties 416 

 417 

Given the complex nature of soil water movement in heterogeneous mountain topography, this study makes several 418 

assumptions and simplifications. The simulations do not include the intricacies of vegetation water use, and the 419 

routine chosen assumes a static leaf area index (LAI) with root uptake controlled only by PET and soil moisture. 420 

The water balance in hydrologic models can be highly sensitive to the method chosen to represent root uptake and 421 

plant water use (Gerten et al., 2004), and hydrologic models generally poorly capture or replicate the interactions 422 

between soil, vegetation and atmospheric properties that combine to control plant water use (Gómez-Plaza et al., 423 

2001; Gerten et al., 2004; Zeng et al., 2005). Additionally, simulations are generally wetter than measured water 424 

contents; therefore, the representation of partitioning shown here displays relative response between climates and 425 

soil profiles rather than absolute quantification of these partitioned components.  426 

 427 

Hydrologic response in hillslopes and catchments is not fully captured in the 1-D modelling approach. Sites across 428 

elevation and precipitation gradients in this study show different responses within each region with generally lower 429 

Q/P and D/P at drier, lower elevations (Figure S6). Within each elevation zone, local variability in microclimate, 430 

vegetation, and soil properties can also lead to heterogeneity in input and partitioning. In addition, we did not allow 431 

for frozen soils in our simulations, but this can be a strong influence on soil input partitioning in places where snow 432 

depth was <50 cm and incapable of insulating the soil (Slater et al., 2017). The 1-D model does not incorporate 433 

lateral surface or subsurface flow, which  can be redistribute water downslope along the soil snow interface (Webb 434 

et al., 2018) and within the shallow subsurface (Kampf et al., 2015).  Lateral redistribution of water thus leads to 435 

spatially variable patterns of input, storage, runoff generation, and ET at the hillslope to watershed scales (Brooks et 436 

al., 2015). While simulating only vertical flow is reasonable for SNOTEL sites located in relatively flat forest 437 

openings, 1-D simulations will tend to be biased wet because they do not allow any lateral redistribution. A 438 

progression of the work shown here would be to simulate 3-D flow and examine the spatial variability in effects of 439 

snow loss. For example, a decline in deep drainage near a ridge line, where flow paths are predominantly vertical 440 

could reduce subsurface flow emergence at downslope locations, and this decreased groundwater emergence may 441 

reduce ET in areas where vegetation is reliant on the emergence of deeper flow paths. Water partitioned into Q and 442 

D in a 1-D model may not represent the same Q and D observed at a stream: Q generated at a point location may 443 

reinfiltrate downslope; D may also emerge downslope to supply streamflow rather than remaining in the deep 444 

subsurface.  445 

 446 
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The partitioning of input into the components used here (Q,D,ET,S) is affected by soil depth. The profile depths we 447 

simulated represent the minimum likely soil depth, as the collection of the pedon reports was limited by the depth of 448 

refusal for sample collection. Shallow soil profiles can also lead to a wet bias in simulations, and this can artificially 449 

elevate saturation excess flow leading to our observations of greater Q/P than D/P in most site-years. Saturation 450 

excess overland flow has been documented in the elevation bands of many SNOTEL sites (Newman et al., 2004; 451 

Eiriksson et al., 2013; Kampf et al., 2015), but it may not occur as frequently as simulated.  452 

 453 

Sub-daily dynamics in snow melt and ET are not captured by our use of a daily time step. We chose to model soil 454 

water response to rainfall and snowmelt at the daily timestep due to better data quality, but processes affecting 455 

partitioning of these inputs take place at sub-daily scales. Comparisons of results from simulations using daily vs 456 

hourly input demonstrate similar timing of response, but greater cumulative surface runoff from hourly simulations 457 

and greater cumulative deep drainage from daily simulations (Table S2, Figure S2). The short hourly time period 458 

allows for higher intensity input, which causes infiltration excess overland flow, whereas daily input is of lower 459 

intensity, allowing for greater deep percolation.  460 

 461 

The simulations used here only allow for matrix flow, excluding macropore flow, for a simplified representation of 462 

soil water movement. Preferential flow though the profile can enhance deep drainage relative to surface runoff, 463 

which is another potential reason why soil moisture simulations were biased wet. 60-80% of deep drainage has been 464 

shown to occur as preferential rather than interstitial flow (Wood et al., 1997; Jaynes et al., 2001; Sukhija et al., 465 

2003), yet our dry climate simulated annual D/P of ~0.05 is of similar magnitude to that reported prior (Wood et al., 466 

1997). The simulated Q/P (~0.0-0.9) vs snowmelt fraction plots from HYDRUS-1D simulations follow the same 467 

general increasing pattern (r = 0.41) as Q/P (~0.0-1.0) vs SP in Hammond et al., 2018a (r = 0.39). This lends 468 

confidence to the HYDRUS-1D simulations, as their simulated values are in the same range as observed streamflow.  469 

 470 

5 Conclusions 471 

 472 

This study helps to explain the mechanisms that lead to greater runoff from snowmelt. At event scale snowmelt 473 

generates more runoff because it tends to be greater in input rate and to occur on wetter soils than rainfall; the 474 

concentration of input during seasonal snowmelt elevates runoff in dry climates but has less of an influence as in wet 475 

climates. Deep drainage can also decline with loss of snow, but it has a weaker response because soil storage buffers 476 

the impacts of snow loss. Soil texture modifies short-term timing of soil moisture and runoff generation, but these 477 

effects are not large enough to alter the annual response of different soil types to changes in snow. Soil depth can 478 

have a greater effect on input partitioning, particularly where soil water storage is less than mean annual 479 

precipitation. Soils that are shallower than observed soil depths generate the greatest runoff and deep drainage, 480 

indicating that shallow soils may show the largest changes in partitioning as input transitions from snowmelt to 481 

rainfall. Increasing soil depth above observed depths gradually reduces surface runoff while increasing deep 482 

drainage. The 1-D simulations provide basic hypotheses for hydrologic partitioning under changing snowmelt that 483 
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should be further explored in a 2-D or 3-D hydrological models and direct observations. Although more work is 484 

necessary to translate these finding to streamflow response, water managers should develop strategies to mitigate 485 

impacts of reduced streamflow generation in places that are most at risk for shifts from snow to rain. 486 
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 733 

Figure 1. Conceptual illustration of study hypotheses indicating the importance of concentrated snowmelt 734 
input (bottom panels) versus intermittent input (top panels) for runoff generation. The wet climate (right-735 
hand panels) generates more runoff (Q) and deep drainage (D) and less evapotranspiration (ET) compared to 736 
the dry climate (left-hand panels). In both climates,  concentrated input can increase both Q and D because it 737 
is more likely to allow soil saturation than intermittent input, which allows ET during periods of drying. The 738 
concentrated input from snowmelt leads to greater increases in Q and D in the dry climate than in the wet 739 
climate because snowmelt is the most likely cause of soil saturation in dry climates.   740 
 741 
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 742 

Figure 2. (A) SNOTEL sites utilized for climate scenarios in this study with insets displaying snow zones 743 
classified by mean annual snow persistence (Moore et al., 2015). (B) Modeling domain layout with yellow 744 
points showing 5, 20 and 50 cm depths where volumetric water content time series were used for model 745 
calibration. Deepest yellow point is the depth where time series were extracted to calculate deep saturation. 746 
Symbols in the graph above the discretized soil profile represent the range of climate scenarios used plotted 747 
by mean annual precipitation (P) and mean annual temperature (T), and the three soil profiles below 748 
represent the soil parameter sets labeled with italicized capital letters (a) loam (b) sandy clay loam (c) sandy 749 
loam. Different layers in each soil profile are represented as shades of gray.  750 
 751 
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 753 

Figure 3. A) Annual runoff (Q), mean saturation at 100 cm depth (Sat100), deep drainage (D) and 754 
evapotranspiration (ET) vs annual precipitation (P) classified by region and climate type. B) Q/P, S/P, D/P 755 
and ET/P vs P classified by region and climate type. Dry sites P/PET ≤1, Wet P/PET >1. Data from historical 756 
input scenarios for soil profile 1056, loam.  757 
 758 
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 760 

Figure 4. Boxplots of event input rate (cm/d) (top), antecedent soil moisture storage (S, cm) (middle) and 761 
event runoff ratio (Q/P, bottom) by region and event type (rain black, snowmelt red). Text in each subplot 762 
gives mean values. All ANOVA comparisons between values for rain and snowmelt have p-values <0.0001. 763 
Results from historical simulations on loam profile.  764 
 765 

 766 

 767 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-98
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 4 March 2019
c© Author(s) 2019. CC BY 4.0 License.



 23 

 768 

Figure 5. Ratio of runoff (Q), deep drainage (D) and evapotranspiration (ET) to input (P) vs. snowmelt 769 
fraction of input and input concentration index (ICI) at the annual time scale. Data from historical 770 
simulations on loam profile. Dry sites P/PET <1=, Wet P/PET >1.  771 
 772 
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  773 

Figure 6. Boxplots of Q/P, D/P and ET/P for four different experiments: historical vs all rain input on loam 774 
soil and constant 1x depth, intermittent vs concentrated input on loam soil and constant 1x depth, different 775 
soil textures with constant 1x depth, and different soil depths all with loam soil texture. Asterisks denote 776 
significance of ANOVA tests between groupings. P-value of ANOVA, *<0.5, **<0.01, ***<0.001. Boxplots 777 
correspond with values in Table 3. Soil texture and soil depth scenarios are compared to 1x depth and loam 778 
texture profile for ANOVAs. 779 
 780 
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 782 

Figure 7.  A) Annual surface runoff (Q), deep drainage (D) and evapotranspiration (ET) as a fraction of 783 
annual precipitation (P) vs annual mean saturation at 100 cm depth (Sat100) and classified by climate type on 784 
the loam profile, Dry sites P/PET <=1, Wet P/PET >1. B) The same variables displayed in A but classified by 785 
soil texture on three different soil profiles. C) The same variables in A but classified by root zone depth on 786 
four different profiles of differing root zone depth. All simulations use historical input.  787 
 788 

 789 

Figure 8. (A) daily time series of runoff (Q), saturation at 100 cm depth (Sat100), deep drainage (D), and 790 
cumulative deep drainage for SNOTEL site 698 input on SNOTEL site 515 (sandy loam), 1049 (sandy clay 791 
loam) and 1056 (loam) profile. (B) daily series for the same variables plotted for four depth scenarios 0.5x, 1x 792 
1.5x and 2x original rooting zone depth. 793 
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Table 1. SNOTEL station properties including the start and end of data records, site elevation, and mean annual climatic 

characteristics: precipitation (P), temperature (T), snow persistence (SP, %), and aridity index (P/PET).  

SNOTEL ID Region State Start End 
Elevation 

(m) 
P (cm) T (C) SP P/PET 

352 Cascades WA 1981 2015 1292 90 6.3 54 0.8 

553 Cascades WA 1982 2015 1049 433 6.9 65 4.4 

375 Cascades WA 1978 2015 1405 146 4.9 69 1.8 

679 Cascades WA 1980 2015 1564 263 4.8 77 4.9 

418 Cascades WA 1981 2015 1768 158 3.6 83 1.9 

778 Sierra CA 1980 2015 1864 69 8.0 53 0.7 

697 Sierra CA 1980 2015 2358 98 3.8 63 0.6 

428 Sierra CA 1981 2015 2089 180 6.0 72 1.3 

848 Sierra CA 1978 2015 2028 197 5.9 74 1.3 

462 Sierra CA 1978 2015 2672 142 4.0 78 1 

559 Uinta UT 1979 2015 2659 74 1.4 60 0.6 

833 Uinta UT 1979 2015 2901 70 1.5 69 0.7 

396 Uinta UT 1981 2015 3228 81 -0.1 76 0.9 

567 Uinta UT 1980 2015 3342 98 0.0 86 0.9 

766 Uinta UT 1989 2015 2938 157 3.2 87 1.3 
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Table 2. Soil profile properties derived from NRCS pedon reports and ROSETTA (Ros.) neural network. Columns are SNOTEL site, soil profile 

horizon, depth range of horizon, rock percent of sample volume, organic carbon percent of sample volume, sand percent of sample weight, silt percent 

of sample weight, clay percent of sample weight, Db33 bulk density of soil sample desorbed to 33kPa, ϴ33 volumetric water content at field capacity, ϴ1500 

volumetric water content at wilting point, soil texture, residual volumetric water content ϴr, saturated volumetric water content ϴs, pore size 

distribution parameter , and Ks saturated hydraulic conductivity. The lowest horizon Ks value was calibrated. Soil textures abbreviated as follows: 

sandy loam (SL), sand (S), loamy sand (LS), sandy clay loam (SCL), loam (L). SNOTEL 515, Harts Pass, WA, SNOTEL 1049, Forestdale Creek, CA, 

SNOTEL 1056, Lightning Ridge, UT. 

Site Hor. 
Depth 

(cm) 

rock  

% vol  

organic 

C % 

vol 

sand 

% 

wt 

silt   

% 

wt 

clay 

% 

wt 

Db33 

g 

cm-3 

ϴ33  ϴ1500  Text. 
Ros. 

ϴr 

Ros. 

ϴs 

Ros.  

(1/cm) 

Ros. 

Ks 

(cm/d) 

515 A1 0-15 9 9 53.5 35.6 10.9 0.63 0.41 0.14 SL 0.06 0.62 0.009 17.4 

515 A2  13-38 8 8 57.6 35.3 7.1 0.64 0.47 0.14 SL 0.05 0.60 0.011 20.5 

515 2Bw1 38-61 27 3 73.1 22.1 4.8 0.86 0.3 0.08 SL 0.04 0.55 0.032 15.1 

515 2Bw2 61-81 55 1 81 11 8 1.46 0.16 0.09 LS 0.05 0.40 0.036 5.49 

515 Cd 81-106 7 1 91.3 4.1 4.6 1.52 0.14 0.05 S 0.05 0.38 0.033 17.4 

515 Cd 106-1000 7 1 91.3 4.1 4.6 1.52 0.14 0.05 S 0.05 0.38 0.033 1.74 

1049 A 0-9 10 7 52.6 25.2 22.2 0.94 0.40 0.14 SCL 0.08 0.55 0.014 5.17 

1049 Bt1 9-20 14 2 48.6 25.4 26 1.13 0.30 0.14 SCL 0.08 0.50 0.014 2.13 

1049 Bt2 20-43 14 1 52.9 23.8 23.3 1.24 0.32 0.12 SCL 0.07 0.47 0.016 1.74 

1049 Bt3 43-63 21 1 53.4 24 22.6 1.19 0.33 0.13 SCL 0.07 0.48 0.015 2.18 

1049 Bt4 63-77 19 1 55.5 25.9 18.6 1.39 0.32 0.12 SL 0.06 0.42 0.017 1.22 

1049 Bt5  77-110 11 0 52.4 30.2 17.4 1.21 0.39 0.13 SL 0.06 0.45 0.013 2.22 

1049 Bt5  110-1000 11 0 52.4 30.2 17.4 1.21 0.39 0.13 SL 0.06 0.45 0.013 0.22 

1056 A 0-10 11 3 36.1 48.8 15.1 1.17 0.30 0.12 L 0.06 0.44 0.010 2.41 

1056 A 10-38 7 2 35.3 49.5 15.2 1.27 0.28 0.11 L 0.06 0.41 0.006 1.47 

1056 Bt1 38-76 6 2 36 48.6 15.4 1.25 0.30 0.10 L 0.06 0.42 0.006 1.59 

1056 Bt2 76-89 16 1 39.3 46 14.7 1.26 0.34 0.09 L 0.06 0.41 0.007 1.54 

1056 2B 89-127 6 2 36.3 48.2 15.5 1.18 0.24 0.09 L 0.06 0.44 0.006 2.23 

1056 2B 127-1000 6 2 36.3 48.2 15.5 1.18 0.24 0.09 L 0.06 0.44 0.006 0.22 
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Table 3. Mean values of unitless response variables Q/P, D/P, and ET/P compared by climate type for four 

hypothetical scenarios: (1) historical vs all rain input, (2) intermittent vs concentrated input, (3) historical 

input on sandy loam, sandy clay loam, and loam profiles, (4) historical input on 0.5x, 1x, 1.5x and 2x original 

rooting zone depth. Dry sites P/PET ≤1, Wet P/PET >1. All scenarios in the table besides those explicitly 

altering soil texture use the loam profile (1056). Asterisks denote the significance of ANOVA tests between 

groupings of simulations and arrows show the direction of change relative to the base scenario: historical 

input on 1x depth profile with loam texture. P-value of ANOVA, *<0.5, **<0.01, ***<0.001. Boxplots 

correspond with values in Table 3. 
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Experiment Scenario Climate Q/P D/P ET/P 

Historical vs. 

all rain 

Historical 

All 0.31 0.09 0.66 

Wet 0.44 0.12 0.51 

Dry 0.13 0.03 0.83 

All rain 

All 0.19*** 0.12 0.73** 

Wet 0.28*** 0.14* 0.55 

Dry 0.04*** 0.01*** 0.95*** 

Intermittent 

vs. 

concentrated2 

Intermittent 

All 0.59 0.00 0.58 

Wet 0.64 0.00 0.34 

Dry 0.54 0.00 0.80 

Concentrated 

All 0.68* 0.002*** 0.48* 

Wet 0.68 0.002*** 0.28* 

Dry 0.68* 0.002*** 0.66** 

Soil texture 

Loam 

(L) 

0.31 0.09 0.66 0.31 

0.44 0.12 0.51 0.44 

0.13 0.03 0.83 0.13 

Sandy loam 

(SL) 

All 0.35** 0.09 0.63* 

Wet 0.05 0.13 0.51 

Dry 0.19* 0.05 1.01*1 

Sandy clay 
loam (SCL) 

All 0.32 0.10* 0.65 

Wet 0.48 0.14 0.52 

Dry 0.14 0.06 1.081 

Soil depth 

0.5x 

All 0.35*** 0.25*** 0.67 

Wet 0.54*** 0.28*** 0.53* 

Dry 0.17** 0.22*** 0.80* 

1x 

All 0.31 0.09 0.66 

Wet 0.44 0.12 0.51 

Dry 0.13 0.03 0.83 

1.5x 

All 0.29 0.10* 0.67 

Wet 0.46 0.16* 0.51 

Dry 0.09 0.03 0.84 

2x 

All 0.27* 0.11*** 0.66 

Wet 0.44 0.18*** 0.51 

Dry 0.09 0.04 0.84 
1Values of ET/P >1 indicate root uptake from soil storage for years with low input (Figure S5).  
2For a dry site (375) and a wet site (559). Intermittent simulations have annual total input separated into four 

five-day periods, whereas concentrated input simulations have all input in twenty-day period of high 

magnitude.  
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